Deterministic signal:

No uncertainty with respect to the signal value at any time.

@) = A o (2T 4)

Random signal:

Some degree of uncertainty in signal values before it actually occurs.

m thermal noise in electronic circuits due to the random movement of electrons,
m reflection of radio waves from different layers of ionosphere



Real and Complex Signals

. In both real and complex signals, the independent variable is real-valued.

. Areal signal at any given time takes its value in the set of real numbers, and
a complex signal takes its value in the set of complex numbers.

. A complex signal can in turn be represented by two real signals, such as the
real-In phase and imaginary Q-quadrature parts or equivalently magnitude
(amplitude) and phase values.

. Signals that we observe physically (using voltmeters, ammeters,
oscilloscopes, etc.) are all real signals, as complex signals have no
physical meaning!!!

. Certain mathematical models and calculations can be greatly simplified if we
use complex notation.

. In communications, a complex signal is often used to convey information
about the magnitude and phase of a signal in the frequency domain.



2.4 ENERGY AND POWER SIGNALS

An electrical signal can be represented as a voltage v(1) or a current if7) with instantaneous power p(1)
actoss a resistor R defined by

p() =2 22)

p(t) = i*(t)R (23)

In communication systems. power 15 often normalized by assuming R to be 1), although R may be
another value in the actual circuit. If the actual value of the power 1s needed. 1t 1s obtamned by
“denormalization” of the normalized value. For the normalized case. Equations 2.2 and 2.3 have the
same form. Therefore, regardless of whether the signal i1s a voltage or curmrent waveform. the
normalization convention allows us to express the mstantaneous power as

p(t) = 2*(t) 24)

where x(t) 1s either a voltage or a current signal. The energy dissipated dunng the time mnterval (—T/2,
T/2) by a real signal with instantaneous power expressed by Equation 2 4 can then be wnitten as

T
ET = [%x*(t)dt (2.5)

and the average power dissipated by the signal during the mterval is

T
PT =—ET == [ x2(t)dt potom E=P.T (2.6



A signal is an energy signal if, and only if, it has nonzero but finite energy
for all time:

_ T/2 o0
Be= Jim | w(t)[2dt = /_OO MO (0 < By < 00)

A signal is a power signal if, and only if, it has finite but nonzero power
for all time:

1 T/2 5 0
— = < Pr < o0
Py I|_r>rC1>OTfT/2 lx(t)|“dt ( x )

General rule:
Periodic and random signals are power signals.
Signals that are both deterministic and non-periodic are energy signals.

E=PT



The performance of a commumication system depends on the recerved signal energy: lugher energy
signals are detected more reliably (with fewer errors) than are lower energy signals - the received
energy does the work On the other hand, power 1s the rate at which energy 1s delivered. It is important
for different reasons. The power determines the voltages that must be applied to a transnutter and the
intensities of the electromagnetic fields that one must contend with 1n radio systems (1e.. fields
waveguides that connect the transmitter to the antenna_ and fields around the radiating elements of the
antenna).

In analyzing communication signals it is often desirable to deal with the waveform energy. We
classify x(t) as an energy signal if, and only if. 1t has nonzero but finite energy (0 < E, < o0) forall
tume, where

T
Er = limp., [rx*(£)dt

= [T x*(t)dt 2.7

In the real world, we always transout signals having fimte energy (0 < E, < ). However, m order
to describe periodic signals. which by definition (Equation 2.1) exist for all time and thus have mfinite
energy, and in order to deal with random signals that have infinite energy, it 1s convement to define a
class of signals called power signals. A signal 15 defined as a power signal if. and only if, it has fimte
but nonzero power (0 < B, < o0) for all time, where

T
P, =limp - [5x2(£)dt (2.8)

The energy and power classifications are mutually exclusive. An energy signal has finite energy but
zero average power, whereas a power signal has fimte average power but infinite energy. A waveform
in a system may be constrained in erther 1ts power or energy values. As a general rule. peniodic signals
and random signals are classified as power signals., while signals that are both deterministic and
nonperniodic are classified as energy signals.

Signal energy and power are both important parameters m specifyving a communication system. The
classification of a signal as either an energy signal or a power signal 15 a convenient model to facilitate
the mathematical treatment of various signals and noise.



Energy and Power Signals

In signal analysis, it is customary to assume a 1Q resistor, so regardless of
whether g(t) represents a voltage across it or a current through it, we may
express the instantaneous power p(t) associated with the signal g(t) as

p(t) =|g(@®)|*

The magnitude squared is used in the instantaneous normalized
power to allow the possibility of g(t) being a complex-valued signal. For real
signals, we therefore have p(t) = g?(t).

It is important to highlight that mathematically, power is the derivative of energy
with respect to time, and physically, it is the rate at which energy is supplied or
consumed.

In a digital communication system, power determines the voltage applied to the
transmitter, and the system performance directly depends on the received signal
energy.

A signal cannot be both an energy signal and a power signal; if it is one, it cannot
be the other.



Power is the rate at which energy
flows. Electrical power is
analogous to the flow rate of water
through a hosepipe
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a) Find the average normalized power in the waveform, x(t)
averaging.
b) Repeat part (a) using the summation of spectral coefficients.

Solution

a) Using Equation (2.13), we have

P. = 1 _AZCOSZZTEfOtdt
ToJ_
Az (7
= 2T0 (1 + cosdnfyt)dt
A2
_E(To) 2
Explowotion - K 12 gp
Y= = " =2 =
oand  Hhew A- 1E
T
20 We com Wnte X (t) = j—

= A cos 2nfyt, using time

iF e (¢
-

o (M1{ot)

I\
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Random process

A random process is a collection of time functions, or
signals, corresponding to various outcomes of a
random experiment. For each outcome, there exists a
deterministic function, which is called a sample
function or a realization.

Random
N
/{Xi(tk)}i=1 variables

X1(t)

>Sample functions
or realizations

XN (t) (deterministic
. function)

tr time (t)

Real number




Random process ...

Strictly stationary: If none of the statistics of the random process
are affected by a shift in the time origin.

Wide sense stationary (WSS): If the mean and autocorrelation
function do not change with a shift in the origin time.

Cyclostationary: If the mean and autocorrelation function are
periodic in time.

Ergodic process: A random process is ergodic in mean and

autocorrelation, if
T/2

12 hyae

m li
X T—ocT J-T/2

and
Rx(1t) = lim = 1z X()X*(t — )dt
X —00 T/2

, respectively.



- The set of all possible outcomes
- Tossing a coin

S={HT}

Rolling a die
S = {1121314I5I6}

. The AWGN in a Communication Channel

S=[-O0,00]

11




Autocorrelation of an energy signal

Ry(m) = z(m) xx*(—7) = [ z(t)x*(t — 7)dt

Autocorrelation of a power signal

i 1 7/2 .
Ry(1) = TI—>moo T 1/ z(t)x™(t — 7)dt

Autocorrelation and spectral density form a Fourier transform pair.
Autocorrelation is symmetric around zero.

Its maximum value occurs at the origin.

Its value at the origin is equal to the average power or energy.



Convolution, Cross-correlation, and Autocorrelation
LTl T
9T 91N f

f*g f+g f+f
R 2 » U 5. . - ,;

Al Tyl e ool |l oo
A N _m_

Convolution describesthe  Cross-correlationisa Auto-correlationis
response of a linear and measure of similarity of the cross-correlation of
time-invariant system to an  two signals. a signal with itself.
input signal.

Tt can be used for It can be used for
The inverse Fourier finding a shift between finding periodic signals
transform of the pointwise two signals. obscured by noise.

product in frequency space. http://en.wikipedia.org/wiki/Convolution
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Baseband signals

* The simplest signaling scheme is pulse amplitude modulation (PAM)
With binary PAM a pulse of amplitude A is used to represent
a “1”and a pulse with amplitude -A to represent a “0”

* The simplest pulse is a rectangular pulse, but in practice other type of pulses
are used
For our discussion we will usually assume a rectangular pulse

* If we let g(t) be the basic pulse shape, than with PAM
we transmit g(t) to represent a “1” and -g(t) to represent a “0”

a(t)
1= S(t) =g t

0 = S(t) =-g(t)

The signal energy depends on the amplitude
Egis the energy of the signal pulse g(t)
For rectangular pulse with energy Eg=> /

&)

E /T 0<t<T E/T | —
g(t){ £

E = Adi=T4=4=[E T

0 otherwise

A\

T



Bandwidth occupancy (ideal rectangular pulse)

G(f) = Flg(t)] L&
A
(T ope 2 g [ g2,
G(f) = ng( e it JO A it X
G(f) =(AD)Sinc(gTe 7 U t [sed]
G(D)
AT

I | ' | I

-2/T -UT 0 /T 2/T -p [- H@Y

* Ideal rectangular pulse has unlimited bandwidth
—  First “null” bandwi =2(1/T)=2/T
* In practice, we “shape” the pulse so that most of its energy is contained within a
small bandwidth




(1) Figure 1 is the illustration of the Fourier Transform pair in regard to a Rectangular pulse in
the time domain and a Sinc function in the frequency domain. We want to observe the physical

symptoms of the impact of time duration of rectangular pulse on the effective bandwidth and
peak point.

F{0)]

Fig. 1: Fourier Transform pair: Rectangular pulse and Sinc function

(a) Mathematically derive the fourier transform of rectangular pulse described in Fig. 1-(a).
It is in general notated as g(f) = rect(t/7) = N(t/7).

(b) Draw magnitude plot and phase plot of the spectra (Fourier Transform) for 7 = 10,
20,40 [seconds]. In other words, overlap three magnitude curves for 7 = 10, 20, 40

in one plot; and overlap three phase curves for 7 = 10, 20,40 in the other plot.
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Baseband versus bandpass signals/spectra:

2(t) : e zo(t) = 2(t) cos(2m fot)

Baseband signal cos(2r fot) Bandpass signal

Local oscillator

X ()

/ 1\

[ Xe(f)]

»

f— | /'\~f

v

—— —Je o Jf
W | 1
SSB Wpsh

Bandwidth dilemma:
Bandlimited signals are not realizable!
Realizable signals have infinite bandwidth!



a(t)

-T/2

T2

Y

g(t)cos(wet) *-—>

-T/2 T/2

p(t) cos(2mfyt)

L] B

(a)

e =3

(b)




Bandpass signals

FlA,,g(t)] = depends on g()
q All] h
-W | W

Cos(2rf 1) F[A,g(t) Cos(2nt t)]

=
A N e

Recall: Multiplication in time = convolution in frequency

To transmit a baseband signal S(t) through a pass-band channel at some
center frequency f, we multiply S(t) by a sinusoid with that frequency

v

v

S ———X U, (=S, ()Cos(2rL.)

= A g(t) Cos(2rt 1)

F[Cos2nE.t)] = (3(f-£)+8(£H£))/2

A
v



Energy content of modulated signals

i

E = j U (r)dt = J A2 (H)Cos® (27 f.1)dt

1+ cos(2ex)

Cos™ (¢0) =
(@) >
A;}j Lol 2 Afi oD 2 ~
E :TLag (r)+?Lﬂg (r)(.o.s(4nﬁr)di
-0
EIH — A; EO
2 '

The cosine part is fast varying and integrates to 0

Modulated signal has 1/2 the energy as the baseband signal



Demodulation

* To recover the original signal, multiply the received signal (U _(t)) by a
cosine at the same frequency

U,.(t) = S,.()Cos2nf.t) = A, g(t) Cos(2nf.t)

Ut)———x——» LPF |— S/t

2Cos(2mf t)
U(t)2Cos(2xf t)= 2S(t)Cos*(2nf, t) = S(t) + S(t)Cos(4nf 1)

* The high frequency component is rejected by the LPF
and we are left with S(t)



a) Half-power bandwidth d) Fractional power containment bandwidth
b) Noise equivalent bandwidth ¢) Bounded power spectral density
(c) Null-to-null bandwidth f)  Absolute bandwidth

(a) Half-power bandwidth. This is the interval between frequencies at which Gx(f') has dropped to

half-power, or 3 dB below the peak value.
(¢) Null-to-null bandwidth. The most popular measure of bandwidth for digital communications is

the width of the main spectral lobe, where most of the signal power is contained.

v

()50dB
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Baseband versus bandpass signals/spectra:

2(t) : e zo(t) = 2(t) cos(2m fot)

Baseband signal cos(2r fot) Bandpass signal

Local oscillator

X ()

/ 1\

[ Xe(f)]

»
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Bandwidth dilemma:
Bandlimited signals are not realizable!
Realizable signals have infinite bandwidth!
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