Quadrature Amplitude Modulation (QAM) (2)

We want to find:

» Examples of constellation: Energy of the vector (symbol - signal)
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We want to find:

Correlation between vectors (symbols — signals)
Euclidean distance between vectors (symbols — signals) Recmngufﬂr constellation



4.4 SIGNAL SPACE REPRESENTATION

In this section. we demonstrate that signals have characteristics that are simlar to vectors and develop
a vector representation for signal waveforms

4.4.1 Vector Space Concepts

A vector v in n-dimensional space 1s charactenized by 1ts n components |1y, V5, ... ,, ¥, |. It may also be
represented as a linear combination of umit vectors or basis vectors ¢; .

v =X, Vi€ (4.50)

The inner preduct of two n-dimensional vectors vy = [vyq, Vyz, ..., Vip] and vy = [v3q, V23, o , Van)
15

V. Vy = Xi Uy = V11 V21+V1pV; 5 @k n=2 (4.51)
Orthogonal vectors are 1f
.t = 0 (452]

The norm of a vector (simply its length) Kvadrat vzdialenosti vektora od pociatku = energia
= [,2 2
|l = J n 2 TVVI TV akn=2;Pytagorovaveta (4.53)

A set of m vectors 1s said to be erthonormal if the vectors are orthogonal and each vector has a unt
norm. A set of m vectors 1s said to be linearly independenr if no one vector can be represented as a
linear combination of the remaming vectors.

The norm square of the sum of two vectors may be expressed as

vy + valI* = Ny 1 + Nlv2llI® + 204w, (4.54)

If 1, and v, are ortogonal, then vy + val1* = llog lI* + [lv2|I?



4.4.3 Orthogonal Expansions of Signals

In this section. we develop a vector representation for signal waveforms. and. thus, we demonstrate an
equivalence between a signal waveform and 1ts vector representation.

Suppose that 5(t) 15 a deterministic real-valued signal with finite energy
Eg = [ [s(0)]%dt (4.65)

There exists a set of function {f,(t).n = 1,2, ..., K} that are orthonormal. We may approximate the
signal 5(t) by a weighted linear combination of these functions. 1.e.,

8(t) = Xi=1Sifi(t) (4.66)
where 5, are the coefficients in the approximation of s(t).
The approximation error is

e(t) = s(t) — &(t) 4.67)
Let us select the coefficients {5} } so as to mummmze the energy E, of the approximation error.

B, = [ [s(6) = $()Pde = [ [s(8) — TE_ sifi(O)]?dt 4.68)

The optimum coefficients 1n the senes expansion of s(t) may be found by differentiating Equation
4.64 with respect to each of the coefficients {5 } and setting the first denvatives to zero.

Under the condition that E,;;;;, = 0 we may expres s(t) as

s(6) = TE, s fi© (4.69)

When every finite energy signal can be represented by a senies expansion of the form (4.69) for which
E,in = 0. the set of orthonormal functions {f, (t)} 1s said to be complere.



Once we have constructed the set of orthonormal waveforms {f,,(t)}. we can express the M signals
{s,(t)} as lmear combinations of the {f, (t)}.

Thus we may write

sk(t) = Ef=1 Senfu(t) @.77)

and

By = 7 [sk (12t = Ty sin = lIsill® @.78)
Based on the expression in Equation 4.77, each signal may be represented by the vector

S () = {Sk1Ska - Siw} (4.79)
or. equivalently as a point in N-dimensional signal space with coordmnates {sg;, i = 1,2,...,N}.

The energy in the k™ signal is simply the square of the length of the vector or. equivalently. the square
of the Euclidean distance from the origin to the point in the N-dimensional space. Thus, any signal can
be represented geometrically as a point in the signal space spanned by the orthonormal functions

{fa()}.

We have demonstrated that a set of M finite energy waveforms {s,(t)} can be represented by a
weighted linear combination of orthonormal functions {f,(t)} of dimensionality N = M. The
functions {f,(t)} are obtamned by applying the Gram-Schmmdt orthogonalization procedure on {s,,(t)}.
It should be emphasized. however. that the functions {f,(t)} obtamned from Gram-Schimdt procedure
are not wmque. If we alter the order in which the orthogonalization of the signals {s,,(t)} 15 performed.
the orthonormal waveforms will be different and the corresponding vector representation of the signals
{5, ()} will depend on the choice of the orthonormal functions {f,, (t)}. Nevertheless. the vectors {s,,}
will retain their geometrical configuration and their lengths will be invariant to the choice of
orthonormal functions {f, (t)}.

The orthogonal expansions described above were developed for real-valued signal waveforms.

Finally. let us consider the case in whach the signal waveforms are band-pass and represented as



sm(t) = Re[sy, (£)el™/e!] (4.80)

where {s;,,, (t)} denote the equivalent low-pass signals. Signal energy may be expressed either in terms
of s, (t) or 54,,,(t). as

Em = [ sE(O)dt =2 [ |5y ()] 2dt (4.81)

The smmilanty between any pawr of signal waveforms. say s,,(t) and s,(t)1s measured by the
normalized cross correlation

T [ Sm(D)si(t)dt = Refomme [, stm(®)sii(8)dt) (482)

We define the complex-valued cross-correlation coefficient p,,as

Prem = 5= oo Sim (O suc(B)lt 483)
then

Re(pum) = T oy Sm(Osic(t)dt (4.84)
or. equivalently

Re(pym) = —ok_ = —mik (4.85)

”5m " "5k ” - -..'I,-':.H‘I-E'-ﬁ.r




The cross-cormrelation coefficients between pairs of signal waveforms or signal vectors comprise one
set of parameters that characterize the similanity of a set of signals. Another related parameter is the
Euclidean distance berween a pair of signals

dii‘}

km —

lsm — sill = (= [sm(®) — s (O)2dt}2

={E, + E}, — Emﬂf‘f(ﬁkm)ﬁ

When E,,, = E;; = E for all m and k. this expression sumplifies to

d) = (2E[1 - Re(pem)])?

(4.86)

487

Thus, the Euclidean distance is an altermative measure of the similarity {or dissimilarity) of the set
of signal waveforms or the corresponding signal vectors.

In the following section. we describe digitally modulared signals and make use of the signal space
representation for such signals. We shall observe that digitally modulated signals, whach are classified

as linear, are convemently expanded in terms of two orthonormal basis functions of the form

fi(®) = \Ecas 2nf.t

f>(t) = —J%sin 2rf.t

(4.88)
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f,(t)

fy(t)

Postup 1:

Sin b1 =\/ig = 0,447213595499958
db1=h2 =26,565051177°
$3=36,86989764584402°

Ps1s2= Cos $3 =0.8

Postup 2:
S1.Sy 2.1+1.2 4
S1S2=—F/—— — — = -= (0.8
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Problem 4

Determine the correlation coefficient py,;, among the four signal waveforms {s;(t)} shown in Figure

in Problem 2 and the corresponding Fuclidean distances.

Solution

For real-valued signals the correlation coefficients are given by:

1 o0
pim == sm(®)su(0)dt
JEmEy /-
And the Euclidean distances by
d.li::?r)t - {Em + E.i: - zxu'EmEkRe(Pkm)F
For the signals in problem:
E,=2FE,=2E=3E,=3
— 0 2 2
z=Wpa = ngplz = \.@,
14
P2z = 0,py4 =0,
1
Py = Y
and
(e) (e) _ (e) _
d\; =2,d)5 ’2+3—2r—_1d ’2+3+2\F—
(€]
=V2+3=45,4}; =

’ 1
diy = [3+3+25=2V2

Since the dimensionality of the signal space 15 N=3, each signal 15 described by three components. The
signal is characterized by the vector s, (1)=(/Z,0,0). Similarly, the signals s, (t). s;(t)and 5, (t) are
characterized by the vectors s;(t)=(0Z,0),5;(0)=(vZ,0,1) and s,(t)=(-yZ,0,1) respectively.
These vectors are shown 1n Figure:

. 3 : :
Their lengths are [1s,| = vZ, [I5, ]l = vZ2llsall = v3, and [Is,]| = V3 and the corresponding signal
energies £, = ||y ]|% k =1,2,3.4.

Sm-Sk S-Sk
Re ==
(Picm) Ismllllsill ~ JEmEk

Example:

s1.53 = (¥2,0,0). (vV2,0,1) =/2.4/2 +0.0 + 0.1 =2

Ey = |ls1|]? =2 E3 = ||s3]]* =3

S1-S3 2

P13 = . V6
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