6.1 OPTIMUM RECEIVERS FOR SIGNALS CORRUPTED BY AWGN

Let us begin by developing a mathematical model for the signal at the mnput to the receiver. We
assume that the transmutter sends digital mformation by use of M signal waveforms {s,,(t), m =
1,2, ..., M}. Each waveform 1s transmitted within the symbol (signaling) interval of duration T. To be
specific, we consider the transmission of information over the interval 0 <t < T.

The channel 1s assumed to commupt the signal by the addition of white Gaussian noise as illustrated
Figure 6.1.
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Figure 6.1 Model for recerved signal passed through an AWGN channel



Thus, the received signal in the mterval 0 < t < T mayv be expressed as
r(t) = sp(t) + n(t) (6.1)
with power spectral densisty of n(t)

®pn(f) = 3 No [W/Hz] (6.2)

Based on the observation of r(t) over the signal interval. we wish to design a recerver that 15 optimum
in the sense that 1t mimmizes the probability of making an error.

It 15 convenient to subdride the receiver mto two parts — the signal demodulator and the detector —
Figure 6.2.
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Figure 6.2 Receiver configuration

The function of the signal demodulator 15 to convert the recerved waveform r(t) into N-dimensional
vector r = [ryr: ...y ]. where N 15 the dimension of the transmutted signal waveforms. The function
of the detector i1s to decide which of M possible signal waveforms was transmitted based of the vector
r.

Two realizations of the signal demodulator are described 1n the next two sections. One 1s based on the
used of signal correlarors. The second 1s based on the use of marched filters. The optimum detector
that follows the signal demodulator 1s designed to minimize the probability of error.



6.1.1 Correlation demodulator

We describe a correlation demodulator that decomposes the received signal and noise mto N-
dimensional vectors. The signal and the noise are expanded into a senies of linearly weighted
orthonormal basis functions {f,,(t)}. It 15 assumed that the IN basis functions {f,(t)} span the signal
space, so that every one of the possible transmutted signal of the set {5, (t)}. can be represented as a
linear combination of {f,(¢)}. In the case of the noise. the functions {f,(t)} do not span the noise
space. However, the noise terms that fall outside the signal space are wurrelevant to the detection of the
signal. Suppose the received signal r(t) 1s passed through a parallel bank of N cross correlators which
basically compute the projection of r(t) onto the N basis functions {f, (t)}. as illustrated in Figure 6.3.
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Figure 6.3 Conrelation-type demodulator



6.1.2 Matched-Filter demodulator

Instead of using a bank of N correlators to generate the vanables {ry, }. we may use a bank of N linear
filters. Suppose that the impulse responses of the N filters are

he(t) = fi(T—),0<t<T (6.11)

where {f;,(t)} are the N basis functions and h, (t) = 0 outside of the interval 0 < t < T. The outputs
of these filters are

£

Ye(t) = f F()hy (t — T)dt

0

t (6.12)
=fr(r}fkfr Ct+1)dr,0<t<T

]

Now, 1f we sample the outputs of the filters at ¢ = T, we obtain

T

y() = | r@f@)dr = n, 6.13)

0

Hence. the sampled outputs of the filters at ime ¢t = T are exactly the set of values {r; } obtained
from the N hinear correlators.



A filter whose umpulse response h(t) = s(T — t) 1s called marched filter to the signal s(t).
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Figure 6.4 Signal s(t) and filter matched to s(t)

Properties of the matched filter:

e If a signal s(t) 15 corrupted by AWGN. the filter with an impulse response matched to s(t)
maximizes the output signal-to-noise ratio (SNR). which 1s as follows

T
2 2E
SNRy =N—f52(t}dt =N (6.13)
0 0
0

¢ Note that the output SNR from the matched filter depends on the energy of the waveform s(t)
but not on the detailed characteristics of s(t). This is another interesting property of the
matched filter.



In the case of the demodulator described above, the N matched filters are matched to the basis
functions {fi(t)}. Figure 6.6 illustrates the matched filter demodulator that generates the observed
vanables {r,}.
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Figure 6.6 Matched filter demodulator
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0.1.3 The Optimum detector

We have demonstrated that., for a signal transmutted over an AWGN channel, either a correlation
demodulator or a matched filter demodulator produces the vector r = [ryry ... 7y |. which contains all
the relevant information in the recerved signal waveform In this section we describe the optimum
decision rule based on the observation vector r. We assume that there 1s no memory i signals

transmutted 1n successive signal intervals.

We wish to design a signal detector that makes a decision on the transmitted signal in each signal
interval based on the observation of the vector r in each interval such that the probability of a correct

decision 15 maximzed.
Euclidean distance fminmimum distance detection)

D(r,sm) = ) (k= smx)® (6.20)

We call D(r,5,,),m = 1,2,..., M, the distance metrics. Hence. for the AWGN channel. the decision
rule based on the ML criterion reduces to finding the signal 5, that 1s closest in distance to the
received signal vector r. We shall refer to this decision rule as nunimum distance detection
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6.2.1 Probability of Error for Binary Modulation
PAM (antipodal)

Let us consider binary PAM signals. where the two signal waveforms are s,(t) = g(t) and s,(t) =
—g(t). and g(t) 1s an arbitrary pulse that is nonzero in the interval 0 < ¢ < T}, and zero elsewhere.
The energy 1n the pulse g(t) 1s E,.

5 5 5

L L
_’JE«‘ 0 .J‘Eb

Figure 6.10 Signal points for antipodal signal.

Let us assume that the two signals are equally likely and that signal s, (t) was transmifted. Then the
recerved signal from the (matched filter or correlation) demodulator 1s

r=s,+n=E, +n (6.33)
where n represents the additive Gaussian noise component, which has zero mean and variance

g2 =-— Nn In this case. the decision rule based on the correlation metric given by Equation 6.23

compares r with the threshold zero. If r > 0. the decision 1s made favor of 5,(t). and if r < 0. the
decision i1s made that 5, (t). was transmutted. The two conditional PDFs of r are

p(rls;) = pr[ (= ”E"} ] (6.34)
TE'NU

p(rls,) = [ (rty El’) ] 635)
]‘TND

These two conditional PDFs are shown in Figure 6.11.
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Figure 6.11 Conditional PDF s of two signals.

Given that 5, (t), was transmitted, the probability of error 1s simply the probability that r < 0, 1.e..

L]
2E
P(els,) = fp(rlsj}dT=Q N—:’ (6.36)

Where @ (x) 1s the Q-function. Simularly. if we assume that 5, (t). was transmitted. r = —/E}, +n

and the probability that r > 0 1is also P{:e 52:} Q ( ’zab I
Since the signals s, (t) and 5, (t)are equally likely to be transnutted, the average probability of emror 15

1 1 2E
Pb=EP(e|sl)+5P(elsz}=Q N—“ (6.37)
(1]

The probability may be also expressed in terms of the distance between the two signals s; and s,.

From Figure 6.10, we observe that the two signals are separated by the distance d,, = 2,/ E},. By

T 1 ) . .
substituting Ep, = dez mto Equation 6.37, we obtain

df,
Ppy=0Q 2N, (6.38)

Gaussian (normal) distribution

The PDF is

1 x—my. s

p(x) = —=exp[-1 (2] (3.40)

Where m,, is the mean and o2 is the variance of the random variable.
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Binary orthogenal signals

Signal vectorss, and s,are two-dimensional. as shown in Figure 6.12, and may be expressed as

2 = [0
s, = [0,{Ep]

Figure 6.12 Signal points for binary crthogonal signals.

The average error probability for binary orthogonal signals 1s

Ep

P, =0 N, = Q(J¥p)

where by defimition. ¥}, 15 the SNER per bat.

(6.39)
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Figure 6.13 Emror probability for binary antipodal and binary orthogonal signaling.
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Figure 6.13 Error probability for binary antipodal and binary orthogonal signaling.









E&CE 411, Spring 2009, Table of ) Function

Tahle 1: Values of @iz} for0 <z <9

x Q) T Q(z) x Q(x) T Qx)
0.00 0.3 2.30 0.010724 455 2ER23x10°F [ 630 5.231x10° 12
0.05 048006 || 2.35  0.0093867 || 460 2.1125x10°°% | 6.85 3.e025x1071°
0.10 046017 || 2.40 00081975 || 465  1.6397x10°% | 600 26001=101°
0.15 044038 || 245 00071428 | 470 1.3008x10° % | 695 1.8284x10 2
020 042074 | 250 00062007 | 475 L01T1=107% | 7.00 1.2708x10 %2
0.25 040120 || 255  (.0053861 480 T7.0333x10°7 | 7.05 B.0450x10°13
030 0.38200 || 260 00046612 || 485 6.1731=10°7 | T.10 6.2378x10°13
0.35  0.36317 || 265 0.0040246 || 4090 4.7018x10°7 | T.15 4.3380x10°13
040 034458 || 2.70 0.003467 405  3.7107=1077 | 7.20 3.0106x10-13
045  0.32636 || 275 00020708 || 500 286865x10°7 | T7.25 2.0830x10°13
050 0.30854 || 2.80  0.0025551 5.05  22091x1077 | 7.30 1.4388x10°13
0556 020116 | 2.85 0.002186 5.10  1.6983x10°7 | 7.35 9910310714
0.60  0.27425 | 290  0.0018658 5.15  1.3024x10°7 | T.40 6.8092x10°14
0.65 025785 | 285  0.0015880 5.20 0.9644x10°F || T45  466Tx1071
070 0.24196 | 3.00  0.0013499 525 TAEDGx10°F | T.50 S.1900x10°14
0.75 022663 || .05 00011442 || 530 5.7901x10%F | 7.55 2.1763=10 14
0.80 021186 || 3.10 00009676 || 535 4.3077=107% | 7.60 L.4807=10 M
0.85 0.19766 | 3.15 0.00081635 | 5.40 3.332x10°° [ 7.65 1.0040%10
000 0.18406 | 320 0.00068714 | 545 25185x10°% | 7.70 6.8033x10%F
005 017106 | 325 000057703 | 5.50 1.809x10°® [ 7.75 4.5046x10°%°
1.00 015866 || 3.30 0.00048342 |[ 5.55 1.4283x107% | 7.80 3.0054x10°13
1.05 014686 || 3.35 0.00040406 || 5.60 1.0718x10°% | 7.85 2.0802x10° 13
1.10 013567 || 3.40  0.00033603 | 5.65 8.0224x10°% | 7.00 1.3045x10°18
1.15 012507 || 345 000028020 | 5.70 5.0004x10°% | 7.05 0325610716
120 0.11507 || 3.50 0.00023263 | 5.75 4.4622x107% (| 8.00 6.221x10°18
1.25  0.10565 || 3.55 0.00019262 | 5.80 3.3157=107% [ 8.05 4.13097=10°19
130 00968 || 3.60 000015911 | 5.85  24579x107% || 810 2.748x10°18
1.35 0088508 | .65 000013112 || 590 18175x10°% [ 815 1.8196x1018
1.40 0080757 | 470 0.0001078 | 595 1.3407=<107% [ 820 1.2019x101@
1.45 0.073529 || 3.75 S8417x10°5 || 6.00 9.8659x1071° [ 525 7.0197=10°17
1.50 0.066807 || 3.80 T7.2348x10°5 || 6.05 7.2423=10°1° [ 530 5.2066=10°17
1.55 0060571 || 3.85 50050107 || 6.10 5.3034x1071°0 | 835 3.4131=10°17
160 0.054709 || 3.90 4.8006x10°° || 6.15 3.8741x10"'" | 840 2.2324%10° 17
1.65 0.049471 || 3.95 3.0076x10°° || 6.20 2.8232:x107'° | 8.45 1.4565x10°17
1.70  0.044565 || 4.00 3.1671=107° || 6.25 2.0523x107'° | 850 0.4705x10° 18
1.75  0.040050 || 4.05 2.5600x=107° || 6.30 1.4882:x107 "% | 855 6154410718
1.80 003503 || 4.10 2.0658x107° || 6.35 1.0766x10 "% | .60 3.0858x10 '8
1.85 0032157 || 4.15 1.6624=10°% || 6.40 T7.7688=10"11 | 865 2.575x10°18
1.90 0.028717 || 4.20 1.3346x1075 || 6.45 5.5025x10°1 [ 870 1.6504x10°18
1.95 0.025588 || 4.25 1.0689x1075 || .50 4.016x10711 [ 875 1.0668x10°18
200 002275 || 430 8.5390x10°° | 655 2ETEex10-1 | BAD 6.8408x<10°19
205 0.020182 || 4.35 6.8060x10°° | 660 20558x10-1 | B85 4.3T6x10-19
210 0.017864 || 440 5.4125x10°% | 665 1.4655x101 | 800 2.7923x10°19
215 0.015778 || 4.45 4.2035x10°% | 6.70 1o421x10-1 | 895 L.77TT4x10°19
220 0.013903 || 4.50 3.3077x10°% | 6.75 T.3023x10°12 | 900 1.1286x10°19
295 0.012224
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