
Principles of Communications

Meixia Tao Shanghai Jiao Tong University

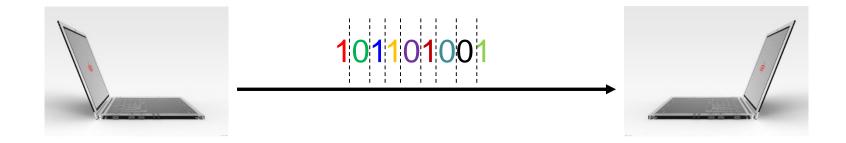
Chapter 8: Digital Modulation Techniques

Selected from Chapter 10.1 – 10.5 of *Fundamentals* of *Communications Systems*, Pearson Prentice Hall 2005, by Proakis & Salehi

Topics to be Covered

Binary digital modulation

Comparison study


M-ary digital modulation

Digital Modulation

- In digital communications, the modulation process corresponds to switching or keying the amplitude, frequency, or phase of a sinusoidal carrier wave according to incoming digital data
- Three basic digital modulation techniques
 - Amplitude-shift keying (ASK) special case of AM
 - Frequency-shift keying (FSK) special case of FM
 - Phase-shift keying (PSK) special case of PM
- Will use signal space approach in receiver design and performance analysis

Binary Modulation

In binary signaling, the modulator produces one of two distinct signals in response to one bit of source data at a time.

Binary modulation types

Binary Phase-Shift Keying (BPSK)

Modulation

"1"
$$\rightarrow s_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_c t)$$

"0" $\rightarrow s_2(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_c t + \pi) = -\sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_c t)$

- $0 \le t < T_b$, T_b bit duration
- f_c : carrier frequency, chosen to be n_c/T_b for some fixed integer n_c or $f_c >> 1/T_b$
- E_b : transmitted signal energy per bit, i.e.

$$\int_{0}^{T_{b}} s_{1}^{2}(t)dt = \int_{0}^{T_{b}} s_{2}^{2}(t)dt = E_{b}$$

• The pair of signals differ only in a 180-degree phase shift

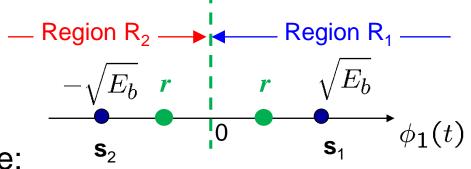
Signal Space Representation for BPSK

There is one basis function

$$\phi_1(t) = \sqrt{\frac{2}{T_b}} \cos(2\pi f_c t) \quad \text{with} \quad 0 \le t < T_b$$

- Then $s_1(t) = \sqrt{E_b}\phi_1(t)$ and $s_2(t) = -\sqrt{E_b}\phi_1(t)$
- A binary PSK system is characterized by a signal space that is one-dimensional (i.e. N=1), and has two message points (i.e. M =2)

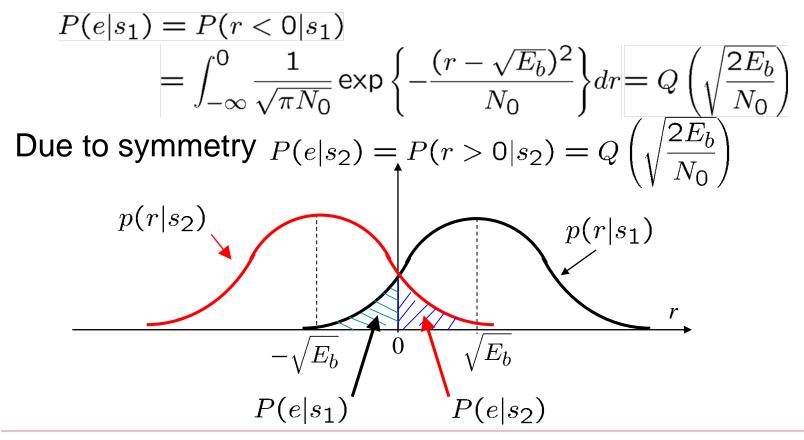
$$-\sqrt{E_b} \qquad \sqrt{E_b} \qquad \qquad d_{12} = 2\sqrt{E_b}$$


$$\mathbf{s}_2 \qquad \mathbf{s}_1 \qquad \phi_1(t) \qquad d_{12} = 2\sqrt{E_b}$$

Decision Rule of BPSK

Assume that the two signals are equally likely, i.e.

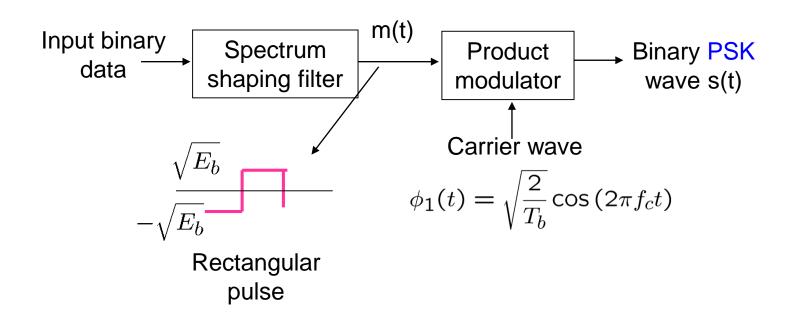
$$P(s_1) = P(s_2) = 0.5$$


Then the optimum decision boundary is the midpoint of the line joining these two message points

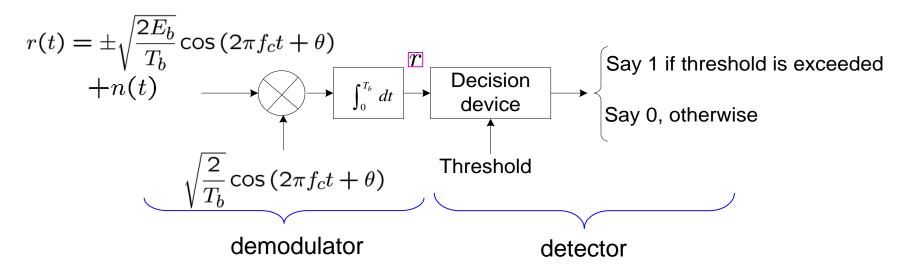
- Decision rule:
 - Guess signal s₁(t) (or binary 1) was transmitted if the received signal point r falls in region R₁ (r > 0)
 - Guess signal $s_2(t)$ (or binary 0) was transmitted otherwise $(r \le 0)$

Probability of Error for BPSK

The conditional probability of the receiver deciding in favor of s₂(t) given that s₁(t) is transmitted is


P_e for BPSK (cont'd)

Since the signals s₁(t) and s₂(t) are equally likely to be transmitted, the average probability of error is


$$P_e = 0.5P(e|\mathbf{s}_1) + 0.5P(e|\mathbf{s}_2) = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$
$$\square$$
$$P_e \text{ depends on ratio } \frac{E_b}{N_0}$$

 This ratio is normally called bit energy to noise density ratio (or SNR/bit)

BPSK Transmitter

BPSK Receiver

- θ is the carrier-phase offset, due to propagation delay or oscillators at transmitter and receiver are not synchronous
- The detection is coherent in the sense of
 - Phase synchronization
 - Timing synchronization

Binary FSK

Modulation

"1"
$$\rightarrow s_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_1 t)$$

"0" $\rightarrow s_2(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_2 t)$

• E_b : transmitted signal energy per bit

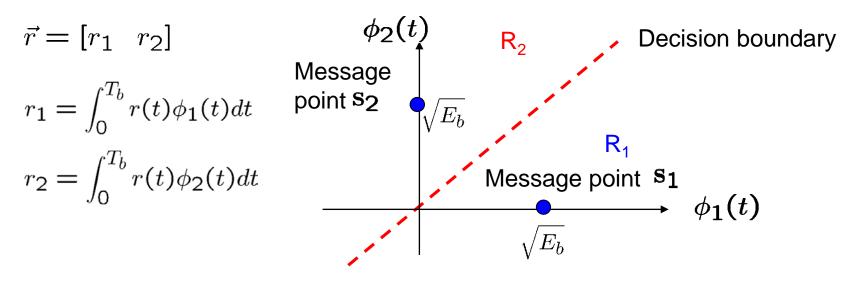
$$\int_0^{T_b} s_1^2(t) dt = \int_0^{T_b} s_2^2(t) dt = E_b$$

- f_i : transmitted frequency with separation $\Delta f = f_1 f_0$
- Δf is selected so that $s_1(t)$ and $s_2(t)$ are orthogonal i.e.

$$\int_0^{T_b} s_1(t) s_2(t) dt = 0 \qquad \text{(Example?)}$$

Signal Space for BFSK

Two orthogonal basis functions are required


$$\phi_{1}(t) = \sqrt{\frac{2}{T_{b}}} \cos(2\pi f_{1}t) \qquad 0 \le t < T_{b} \qquad s_{1}(t) = \sqrt{E_{b}}\phi_{1}(t)$$

$$\phi_{2}(t) = \sqrt{\frac{2}{T_{b}}} \cos(2\pi f_{2}t) \qquad 0 \le t < T_{b} \qquad s_{2}(t) = \sqrt{E_{b}}\phi_{2}(t)$$

• Signal space representation

$$s_1 = [\sqrt{E_b} \ 0]$$
 $s_2 = [0 \ \sqrt{E_b}]$
Message point s_2
Message point s_1
Message point s_1
 $\sqrt{E_b}$
Message point s_1
 $\sqrt{E_b}$

Decision Regions of Binary FSK

Observation vector

- The receiver decides in favor of s_1 if the observation vector r falls inside region R_1 . This occurs when $r_1 > r_2$
- When r₁ < r₂, r falls inside region R₂ and the receiver decides in favor of s₂

Probability of Error for Binary FSK

• Given that s_1 is transmitted,

$$r_1 = \sqrt{E_b} + n_1$$
 and $r_2 = n_2$

Since the condition r₁ < r₂ corresponds to the receiver making a decision in favor of symbol s₂, the conditional probability of error given s₁ is transmitted is given by

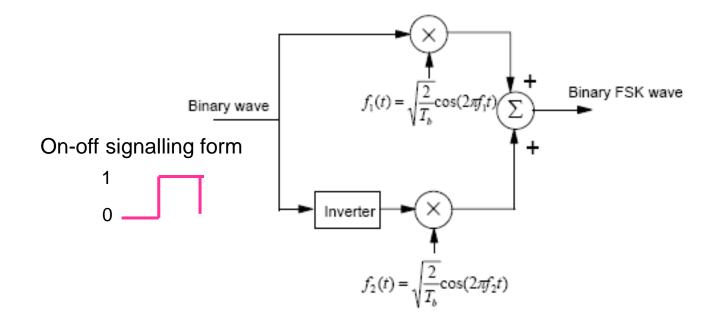
$$P(e|s_1) = P(r_1 < r_2|s_1) = P(\sqrt{E_b} + n_1 < n_2)$$

- Define a new random variable $n = n_1 n_2$
- Since n_1 and n_2 are *i.i.d* with $n_1, n_2 \in \mathcal{N}(0, N_0/2)$
- Thus, *n* is also Gaussian with $n \in \mathcal{N}(0, N_0)$

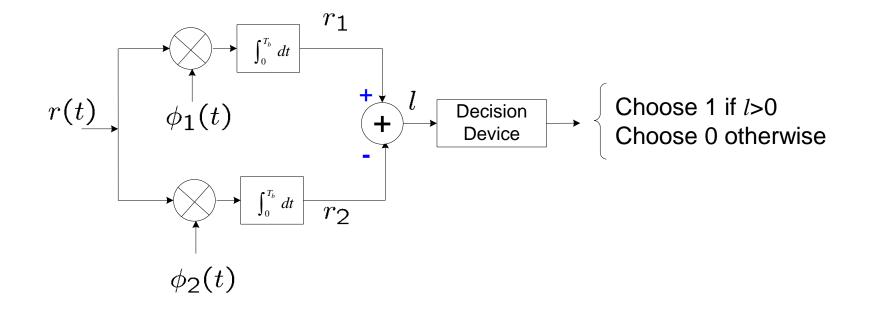
$$P(e|s_1) = P(n < -\sqrt{E_b}) = Q\left(\sqrt{\frac{E_b}{N_0}}\right)$$

P_e for BFSK (cont'd)

By symmetry


$$P(e|s_2) = P(r_1 > r_2|s_2) = Q\left(\sqrt{\frac{E_b}{N_0}}\right)$$

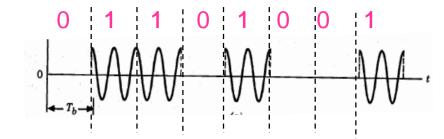
 Since the two signals are equally likely to be transmitted, the average probability of error for coherent binary FSK is


$$P_e = Q\left(\sqrt{\frac{E_b}{N_0}}\right)$$
 \implies 3 dB worse than BPSK

To achieve the same P_e , BFSK needs 3dB more transmission power than BPSK

Binary FSK Transmitter

Coherent Binary FSK Receiver



Binary ASK

Modulation

"1"
$$\rightarrow s_1(t) = \sqrt{\frac{2E}{T_b}} \cos(2\pi f_c t)$$

"0" $\rightarrow s_2(t) = 0$ $0 \le t < T_b$

Average energy per bit

(On-off signaling)

$$E_{b} = \frac{E+0}{2} \quad \text{i.e.} \quad E = 2E_{b}$$
Decision Region
$$-\operatorname{Region} R_{2} \rightarrow \operatorname{Region} R_{1} - \frac{s_{2}}{0} \quad \frac{s_{1}}{\sqrt{2E_{b}}} \quad \phi_{1}(t)$$

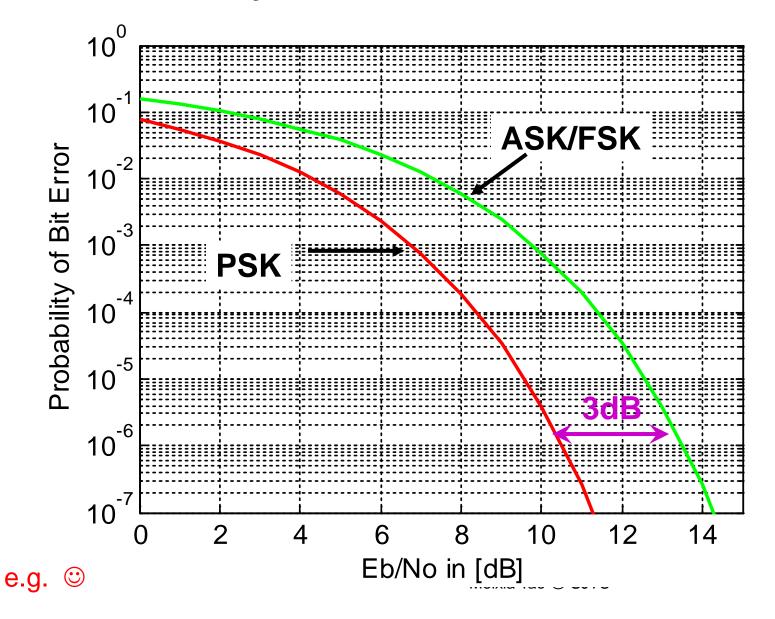
Probability of Error for Binary ASK

Average probability of error is

$$P_e = Q\left(\sqrt{\frac{E_b}{N_0}}\right)$$

Identical to that of coherent binary FSK

Exercise: Prove P_e


Probability of Error and the Distance Between Signals

BPSK	BFSK	BASK
$d_{1,2} = 2\sqrt{E_b}$	$d_{1,2} = \sqrt{2E_b}$	$d_{1,2} = \sqrt{2E_b}$
$P_e = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$	$P_e = Q\left(\sqrt{\frac{E_b}{N_0}}\right)$	$P_e = Q\left(\sqrt{\frac{E_b}{N_0}}\right)$

In general,

$$P_e = Q\left(\sqrt{\frac{d_{12}^2}{2N_0}}\right)$$

Probability of Error for BPSK and FSK/ASK

Example

Binary data are transmitted over a microwave link at the rate of 10⁶ bits/sec and the PSD of the noise at the receiver input is 10⁻¹⁰ watts/Hz.

- a) Find the average carrier power required to maintain an average probability of error $P_e \leq 10^{-4}$ for coherent binary FSK.
- b) Repeat the calculation in a) for noncoherent binary FSK

- We have discussed
 - Coherent modulation schemes, .e.g. BPSK, BFSK, BASK
 - They needs coherent detection, assuming that the receiver is able to detect and track the carrier wave's phase

- In many practical situations, strict phase synchronization is not possible. In these situations, non-coherent reception is required.
- We now consider:
 - Non-coherent detection on binary FSK
 - Differential phase-shift keying (DPSK)

Non-coherent scheme: BFSK

Consider a binary FSK system, the two signals are

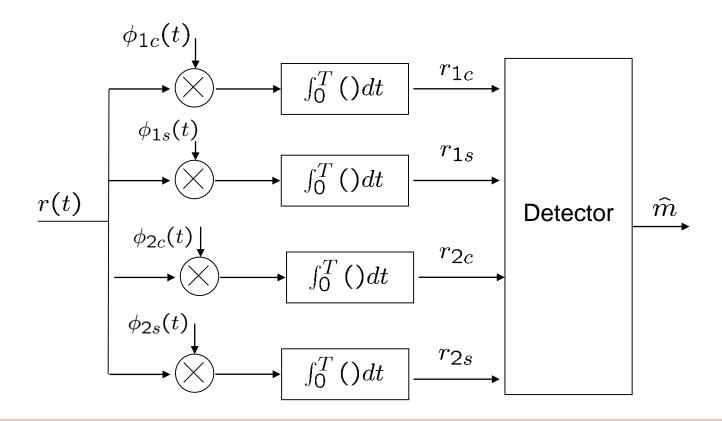
$$s_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos\left(2\pi f_1 t + \theta_1\right)$$
$$0 \le t < T_b$$
$$s_2(t) = \sqrt{\frac{2E_b}{T_b}} \cos\left(2\pi f_2 t + \theta_2\right)$$

 θ_1 , θ_2 : unknown random phases with uniform distribution

$$p_{\theta_1}(\theta) = p_{\theta_2}(\theta) = \begin{cases} 1/2\pi & \theta \in [0, 2\pi) \\ 0 & \text{else} \end{cases}$$

Signal Space Representation

Since


$$s_{1}(t) = \sqrt{\frac{2E_{b}}{T_{b}}} \cos\left(2\pi f_{1}t + \theta_{1}\right) = \sqrt{\frac{2E_{b}}{T_{b}}} \cos(2\pi f_{1}t) \cos(\theta_{1}) - \sqrt{\frac{2E_{b}}{T_{b}}} \sin(2\pi f_{1}t) \sin(\theta_{1})$$
$$s_{2}(t) = \sqrt{\frac{2E_{b}}{T_{b}}} \cos\left(2\pi f_{2}t + \theta_{2}\right) = \sqrt{\frac{2E_{b}}{T_{b}}} \cos(2\pi f_{2}t) \cos(\theta_{2}) - \sqrt{\frac{2E_{b}}{T_{b}}} \sin(2\pi f_{2}t) \sin(\theta_{2})$$

- Choose four basis functions as $\phi_{1c}(t) = \sqrt{2/T_b} \cos(2\pi f_1 t) \quad \phi_{1s}(t) = -\sqrt{2/T_b} \sin(2\pi f_1 t)$ $\phi_{2c}(t) = \sqrt{2/T_b} \cos(2\pi f_2 t) \quad \phi_{2s}(t) = \sqrt{2/T_b} \sin(2\pi f_2 t)$
- Signal space representation

$$\vec{s}_1 = \begin{bmatrix} \sqrt{E_b} \cos \theta_1 & \sqrt{E_b} \sin \theta_1 & 0 & 0 \end{bmatrix}$$
$$\vec{s}_2 = \begin{bmatrix} 0 & 0 & \sqrt{E_b} \cos \theta_2 & \sqrt{E_b} \sin \theta_2 \end{bmatrix}$$

The vector representation of the received signal

$$\vec{r} = [r_{1c} \ r_{1s} \ r_{2c} \ r_{2s}]$$

Decision Rule for Non-coherent FSK

ML criterion:

Choose s₁ $f(\vec{r}|\vec{s_1}) \gtrsim f(\vec{r}|\vec{s_2})$

Choose s₂

Conditional pdf

$$f(\vec{r}|\vec{s}_1,\theta_1) = \frac{1}{\pi N_0} \exp\left[-\frac{(r_{1c} - \sqrt{E_b}\cos\theta_1)^2 + (r_{1s} - \sqrt{E_b}\sin\theta_1)^2}{N_0}\right] \times \frac{1}{\pi N_0} \exp\left[-\frac{r_{2c}^2 + r_{2s}^2}{N_0}\right]$$

Similarly,

$$f(\vec{r}|\vec{s}_2,\theta_2) = \frac{1}{\pi N_0} \exp\left[-\frac{r_{1c}^2 + r_{1s}^2}{N_0}\right] \\ \times \frac{1}{\pi N_0} \exp\left[-\frac{(r_{2c} - \sqrt{E_b}\cos\theta_2)^2 + (r_{2s} - \sqrt{E_b}\sin\theta_2)^2}{N_0}\right]$$

• For ML decision, we need to evaluate

$$f(\vec{r}|\vec{s}_1) \ge f(\vec{r}|\vec{s}_2)$$

• i.e.

$$\frac{1}{2\pi} \int_0^{2\pi} f(\vec{r} | \vec{s_1}, \theta_1) d\theta_1 \ge \frac{1}{2\pi} \int_0^{2\pi} f(\vec{r} | \vec{s_2}, \theta_2) d\theta_2$$

Removing the constant terms

$$\left(\frac{1}{\pi N_0}\right)^2 \exp\left[-\frac{r_{1c}^2 + r_{1s}^2 + r_{2c}^2 + r_{2s}^2 + E}{N_0}\right]$$

We have the inequality

$$\frac{1}{2\pi} \int_{0}^{2\pi} \exp\left[\frac{2\sqrt{E}r_{1c}\cos(\phi_1) + 2\sqrt{E}r_{1s}\sin(\phi_1)}{N_0}\right] d\phi_1$$
$$\geq \frac{1}{2\pi} \int_{0}^{2\pi} \exp\left[\frac{2\sqrt{E}r_{2c}\cos(\phi_1) + 2\sqrt{E}r_{2s}\sin(\phi_1)}{N_0}\right] d\phi_2$$

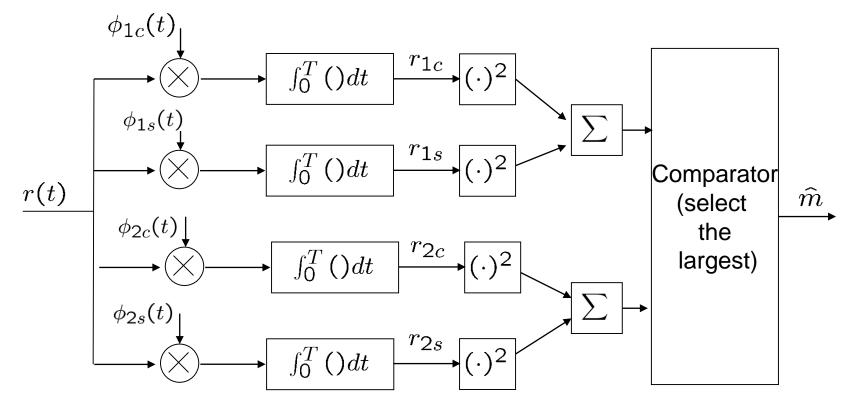
By definition

$$\frac{1}{2\pi} \int_{0}^{2\pi} \exp\left[\frac{2\sqrt{E}r_{1c}\cos(\phi_{1}) + 2\sqrt{E}r_{1s}\sin(\phi_{1})}{N_{0}}\right] d\phi_{1} = I_{0}\left(\frac{2\sqrt{E}(r_{1c}^{2} + r_{1s}^{2})}{N_{0}}\right)$$

where $I_0(\cdot)$ is a modified Bessel function of the zeroth order

Decision Rule (cont'd)

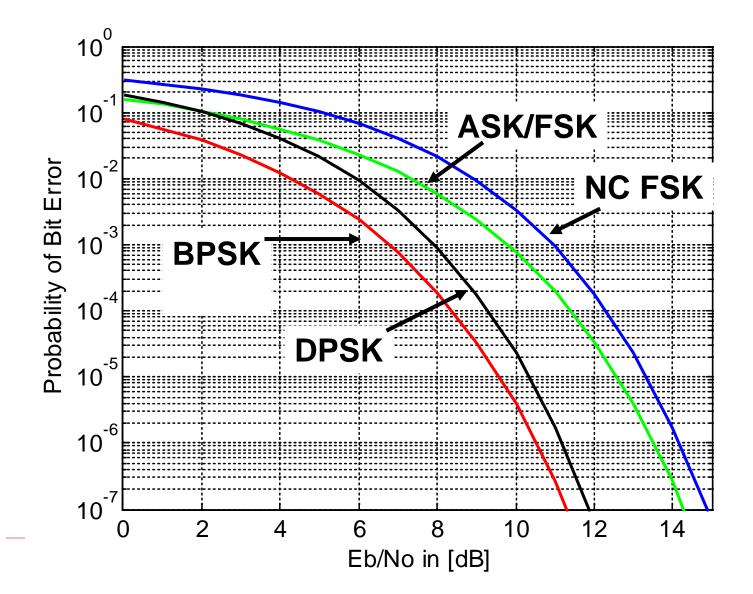
Thus, the decision rule becomes: choose s₁ if


$$I_{0}\left(\frac{2\sqrt{E(r_{1c}^{2}+r_{1s}^{2})}}{N_{0}}\right) \ge I_{0}\left(\frac{2\sqrt{E(r_{2c}^{2}+r_{2s}^{2})}}{N_{0}}\right)$$

 Noting that this Bessel function is monotonically increasing. Therefore we choose s₁ if

$$\sqrt{r_{1c}^2 + r_{1s}^2} \ge \sqrt{r_{2c}^2 + r_{2s}^2}$$

- Interpretation: compare the energy in the two frequencies and pick the larger => envelop detector
- Carrier phase is irrelevant in decision making

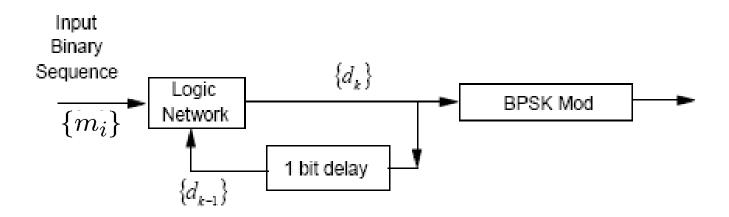

Structure of Non-Coherent Receiver for Binary FSK

• It can be shown that $P_e = \frac{1}{2} \exp\left(-\frac{E_b}{2N_0}\right)$

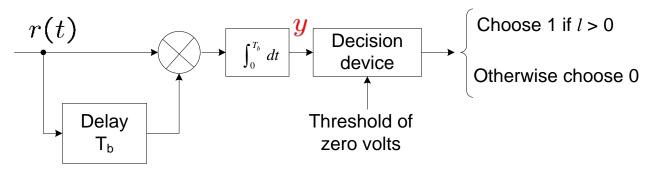
(For detailed proof, see Section 10.4.2 in the textbook)

Performance Comparison Between coherent FSK and Non-Coherent FSK

33


Differential PSK (DPSK)

- Non-coherent version of PSK
- Phase synchronization is eliminated using differential encoding
 - Encode the information in phase difference between successive signal transmission. In effect,
 - to send "0", advance the phase of the current signal by 180⁰;
 - to send "1", leave the phase unchanged
- Provided that the unknown phase θ contained in the received wave varies slowly (constant over two bit intervals), the phase difference between waveforms received in two successive bit intervals will be independent of θ .

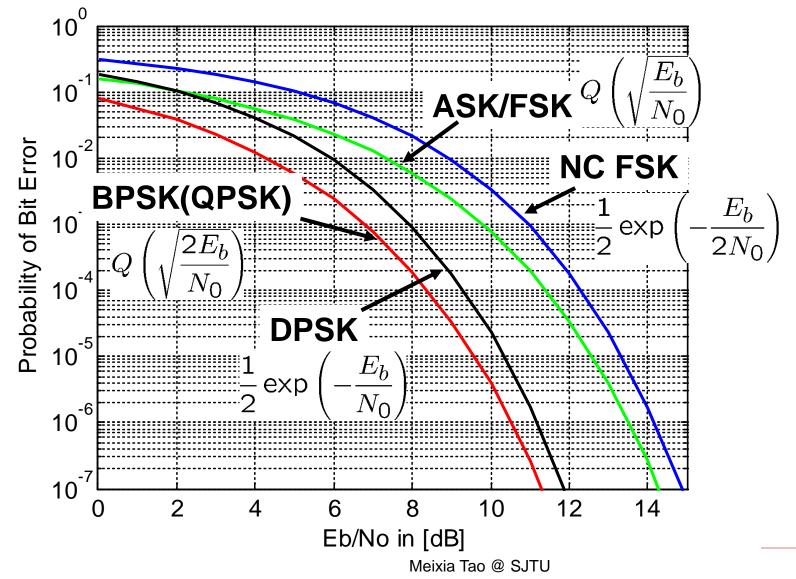

Generation of DPSK signal

- Generate DPSK signals in two steps
 - Differential encoding of the information binary bits
 - Phase shift keying
- Differential encoding starts with an arbitrary reference bit

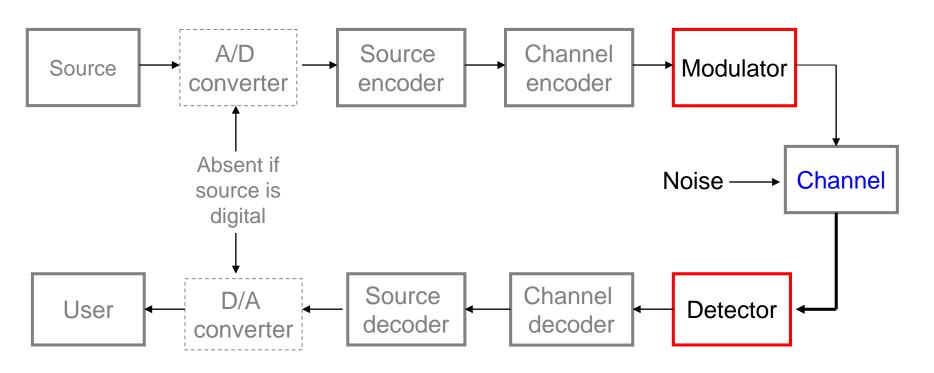
DPSK Transmitter Diagram

Differential Detection of DPSK Signals

Output of integrator (assume noise free)


$$y = \int_0^{T_b} r(t)r(t - T_b)dt = \int_0^{T_b} \cos(w_c t + \psi_k + \theta) \cos(w_c t + \psi_{k-1} + \theta)dt$$
$$\propto \cos(\psi_k - \psi_{k-1})$$

- The unknown phase θ becomes irrelevant
- If $\psi_k \psi_{k-1} = 0$ (bit 1), then y > 0
- if $\psi_k \psi_{k-1} = \pi$ (bit 0), then y < 0
- Error performance $P_e = \frac{1}{2} \exp\left(-\frac{E_b}{N_0}\right)$


Summary of P_e for Different Binary Modulations

Coherent PSK	$Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$
Coherent ASK	$Q\left(\sqrt{\frac{E_b}{N_0}}\right)$
Coherent FSK	$Q\left(\sqrt{\frac{E_b}{N_0}}\right)$
Non-Coherent FSK	$\frac{1}{2}\exp\left(-\frac{E_b}{2N_0}\right)$
DPSK	$\frac{1}{2}\exp\left(-\frac{E_b}{N_0}\right)$

P_e **Plots for Different Binary Modulations**

Topics to be Covered

Binary digital modulation

Comparison study

M-ary digital modulation

M-ary Modulation (多进制调制)

M-ary Modulation Techniques

- In binary data transmission, send only one of two possible signals during each bit interval T_b
- In <u>M-ary</u> data transmission, send one of M possible signals during each signaling interval T
- In almost all applications, M = 2ⁿ and T = nT_b, where n is an integer
- Each of the M signals is called a <u>symbol</u>
- These signals are generated by changing the amplitude, phase, frequency, or combined forms of a carrier in M discrete steps.
- Thus, we have:
 - MASK MPSK MFSK MQAM

M-ary Phase-Shift Keying (MPSK)

The phase of the carrier takes on M possible values:

$$\theta_m = 2\pi(m-1)/M, \ m = 1,\ldots,M$$

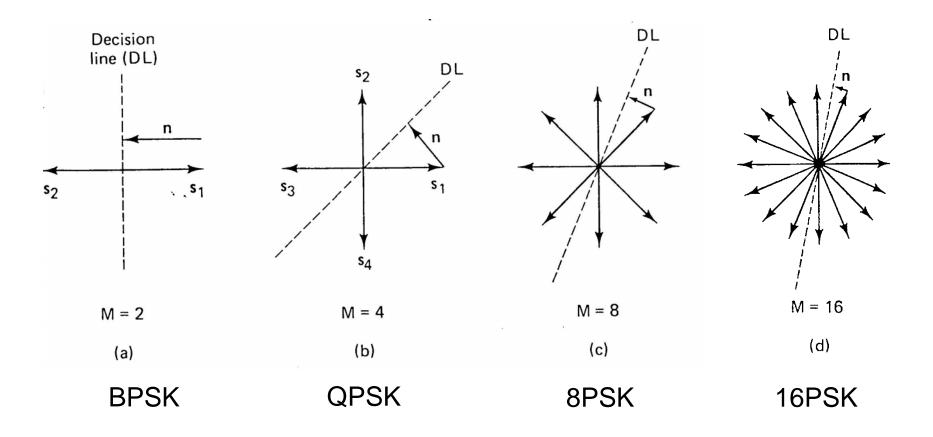
• Signal set:

$$s_m(t) = \sqrt{\frac{2E_s}{T}} \cos\left[2\pi f_c t + \frac{2\pi(m-1)}{M}\right] \qquad \begin{array}{c} m = 1, \dots, M\\ 0 \le t < T \end{array}$$

• E_s = Energy per symbol

$$f_c >> \frac{1}{T}$$

Basis functions


$$\phi_1(t) = \sqrt{\frac{2}{T}} \cos(2\pi f_c t) \qquad 0 \le t < T$$

$$\phi_2(t) = \sqrt{\frac{2}{T}} \sin(2\pi f_c t)$$

MPSK (cont'd)

Signal space representation

$$s_{m}(t) = \sqrt{\frac{2E_{s}}{T}} \cos\left[2\pi f_{c}t + \frac{2\pi(m-1)}{M}\right]$$
$$= \sqrt{\frac{2E_{s}}{T}} \cos\left(2\pi f_{c}t\right) \cos\left[\frac{2\pi(m-1)}{M}\right]$$
$$-\sqrt{\frac{2E_{s}}{T}} \sin\left(2\pi f_{c}t\right) \sin\left[\frac{2\pi(m-1)}{M}\right]$$
$$= \sqrt{E_{s}} \cos\left[\frac{2\pi(m-1)}{M}\right] \phi_{1}(t) - \sqrt{E_{s}} \sin\left[\frac{2\pi(m-1)}{M}\right] \phi_{2}(t)$$
$$\mathbf{s}_{m} = \left[\sqrt{E_{s}} \cos\left(\frac{2\pi(m-1)}{M}\right) - \sqrt{E_{s}} \sin\left(\frac{2\pi(m-1)}{M}\right)\right]$$
$$m = 1, \dots, M$$

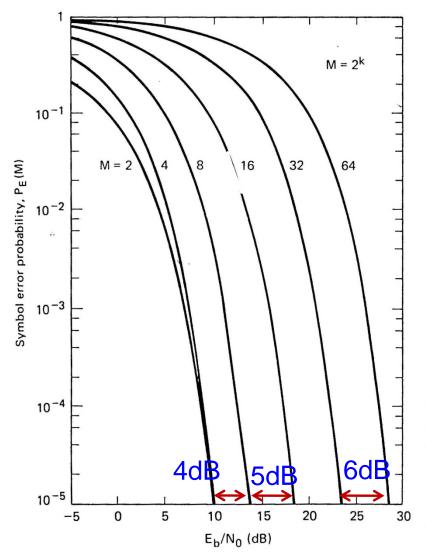
MPSK Signal Constellations

Euclidean distance

$$d_{mn} = \left\|\mathbf{s}_m - \mathbf{s}_n\right\| = \sqrt{2E_s \left(1 - \cos\frac{2\pi(m-n)}{M}\right)}$$

The minimum Euclidean distance is

$$d_{\min} = \sqrt{2E_s \left(1 - \cos\frac{2\pi}{M}\right)} = 2\sqrt{E_s} \sin\frac{\pi}{M}$$

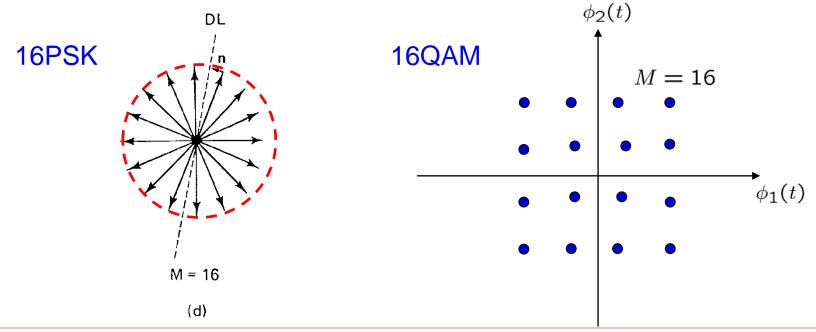

- d_{min} plays an important role in determining error performance as discussed previously (union bound)
- In the case of PSK modulation, the error probability is dominated by the erroneous selection of either one of the two signal points adjacent to the transmitted signal point.
- Consequently, an approximation to the symbol error probability is

$$P_{MPSK} \approx 2Q \left(\frac{d_{\min}/2}{\sqrt{N_0/2}} \right) = 2Q \left[\left(\sqrt{\frac{2E_s}{N_0}} \sin \frac{\pi}{M} \right) \right]$$

Exercise

- Consider the M=2, 4, 8 PSK signal constellations. All have the same transmitted signal energy Es.
- Determine the minimum distance d_{min} between adjacent signal points
- For M=8, determine by how many dB the transmitted signal energy Es must be increased to achieve the same d_{min} as M =4.

Error Performance of MPSK



 For large M, doubling the number of phases requires an additional 6dB/bit to achieve the same performance

Figure 3.32 Symbol error probability for coherently detected multiple phase signaling. (Reprinted from W. C. Lindsey and M. K. Simon, *Telecommunication Systems Engineering*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973, courtesy of W. C. Lindsey and Marvin K. Simon.)

M-ary Quadrature Amplitude Modulation (MQAM 正交幅度调制)

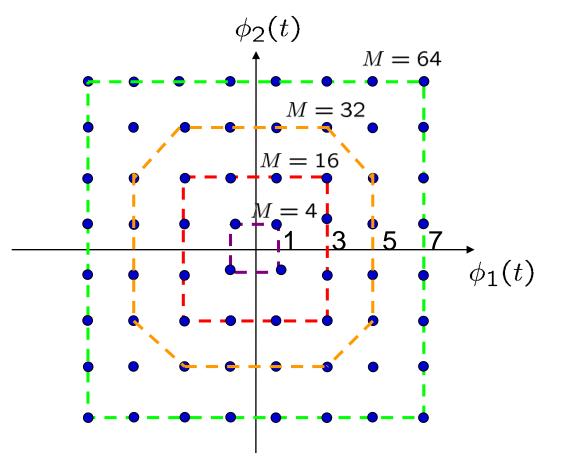
- In MPSK, in-phase and quadrature components are interrelated in such a way that the envelope is constant (circular constellation)
- If we relax this constraint, we get M-ary QAM

MQAM

• Signal set:

$$s_i(t) = \sqrt{\frac{2E_0}{T}} a_i \cos(2\pi f_c t) + \sqrt{\frac{2E_0}{T}} b_i \sin(2\pi f_c t) \qquad 0 \le t < T$$

- E_0 is the energy of the signal with the lowest amplitude
- a_i, b_i are a pair of independent integers
- Basis functions:


$$\phi_1(t) = \sqrt{\frac{2}{T}} \cos(2\pi f_c t) \quad \phi_2(t) = \sqrt{\frac{2}{T}} \sin(2\pi f_c t) \quad 0 \le t < T$$

Signal space representation

$$\vec{s_i} = \begin{bmatrix} \sqrt{E_0} a_i & \sqrt{E_0} b_i \end{bmatrix}$$

MQAM Signal Constellation

Square lattice

Error Performance of MQAM

Upper bound of the symbol error probability

$$P_e \le 4Q\left(\sqrt{\frac{3kE_b}{(M-1)N_0}}\right) \qquad \text{(for } M = 2^k\text{)}$$

• Exercise:

Determine the increase in Eb required to maintain the same error performance if the number of bits per symbol is increased from k to k+1, where k is large.

M-ary Frequency-Shift Keying (MFSK) or Multitone Signaling

Signal set:

$$s_m(t) = \sqrt{\frac{2E_s}{T}} \cos \left\{ 2\pi (f_c + (m-1)\triangle f) t \right\} \quad \begin{array}{l} m = 1, \dots, M \\ 0 \le t < T \end{array}$$

where $\triangle f = f_m - f_{m-1}$ with $f_m = f_c + m \triangle f$

Correlation between two symbols

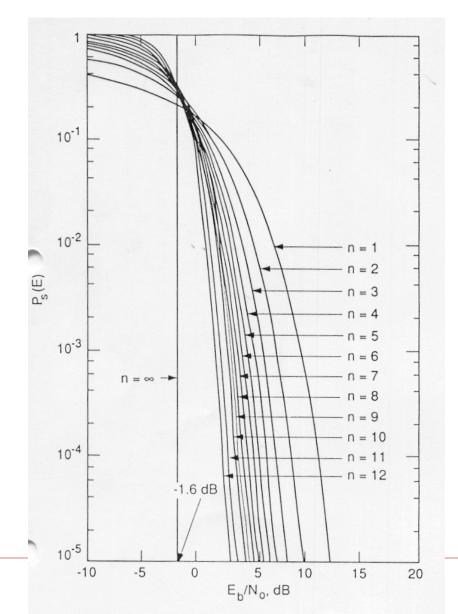
$$\rho_{mn} = \frac{1}{E_s} \int_0^T s_m(t) s_n(t) dt$$
$$= \frac{\sin[2\pi(m-n)\triangle fT]}{2\pi(m-n)\triangle fT}$$

$$= \operatorname{sinc}[2(m-n) \triangle fT]$$

MFSK (cont'd) ρ_{mn} Δf 0 2T2T-0.217

For orthogonality, the minimum frequency separation is

$$\Delta f = \frac{1}{2T}$$

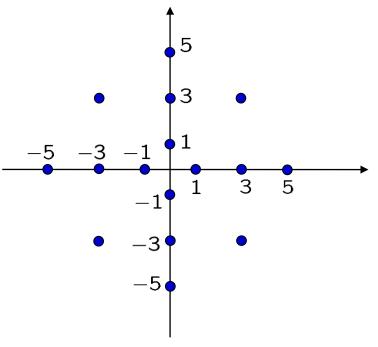

 M-ary orthogonal FSK has a geometric presenation as M M-dim orthogonal vectors, given as

$$\mathbf{s}_{0} = \left(\sqrt{E_{s}}, 0, 0, \cdots, 0\right)$$
$$\mathbf{s}_{1} = \left(0, \sqrt{E_{s}}, 0, \cdots, 0\right)$$
$$\vdots$$
$$\mathbf{s}_{M-1} = \left(0, 0, \cdots, 0, \sqrt{E_{s}}\right)$$

The basis functions are

$$\phi_m = \sqrt{\frac{2}{T}} \cos 2\pi \left(f_c + m\Delta f \right) t$$

Error Performance of MFSK

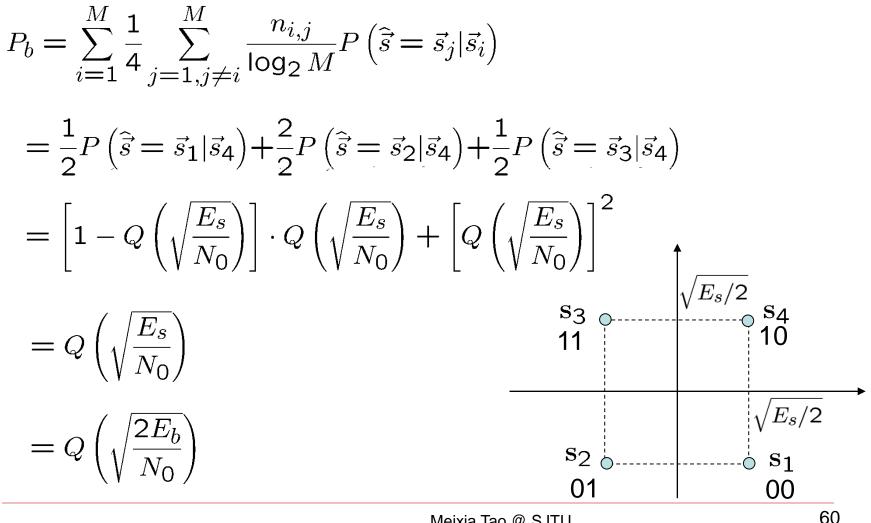

56

Notes on Error Probability Calculations

- Pe is found by integrating conditional probability of error over the decision region
 - Difficult for multi-dimensions
 - Can be simplified using union bound (see ch07)
- Pe depends only on the distance profile of signal constellation

Example

- The 16-QAM signal constellation shown below is an international standard for telephone-line modems (called V.29).
- a) Determine the optimum decision boundaries for the detector
- b) Derive the union bound of the probability of symbol error assuming that the SNR is sufficiently high so that errors only occur between adjacent points
- c) Specify a Gray code for this 16-QAM V.29 signal constellation


Symbol Error versus Bit Error

- Symbol errors are different from bit errors
- When a symbol error occurs, all k bits could be in error
- In general, we can find BER using

$$P_{b} = \sum_{i=1}^{M} P(\vec{s}_{i}) \sum_{j=1, j \neq i}^{M} \frac{n_{i,j}}{\log_{2} M} P\left(\hat{\vec{s}} = \vec{s}_{j} | \vec{s}_{i}\right)$$

- n_{ij} is the number different bits between s_i and s_j
- Gray coding is a bit-to-symbol mapping, where two adjacent symbols differ in only one bit out of the k bits
- An error between adjacent symbol pairs results in one and only one bit error.

Example: Gray Code for QPSK

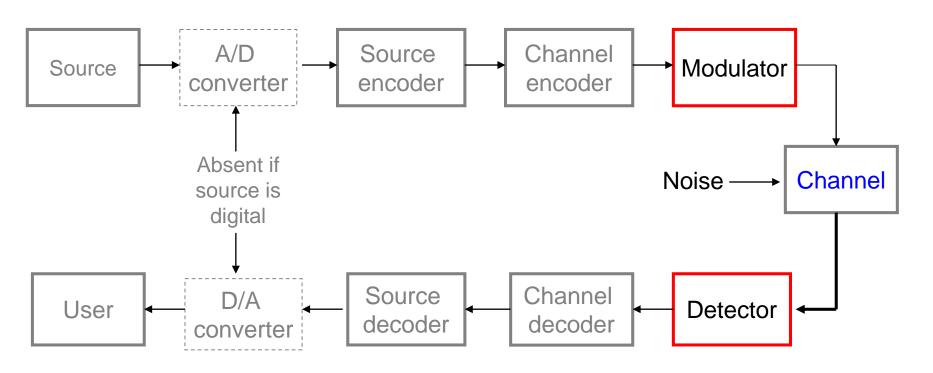
Meixia Tao @ SJTU

Bit Error Rate for MPSK and MFSK

- For MPSK with Gray coding
 - An error between adjacent symbols will most likely occur
 - Thus, bit error probability can be approximated by

$$P_b \approx \frac{P_e}{\log_2 M}$$

- For MFSK
 - When an error occurs anyone of the other symbols may result equally likely.
 - Thus, k/2 bits every k bits will on average be in error when there is a symbol error
 - Bit error rate is approximately half of the symbol error rate


$$P_b \cong \frac{1}{2} P_e$$

Think ...

Why 4G LTE prefers MQAM over MPSK/MFSK?

Topics to be Covered

- Binary digital modulation
- M-ary digital modulation

Comparison study

Comparison of M-ary Modulation Techniques

- Channel bandwidth and transmit power are two primary communication resources and have to be used as efficient as possible
 - Power utilization efficiency (energy efficiency): measured by the required E_b/N_o to achieve a certain bit error probability
 - Spectrum utilization efficiency (bandwidth efficiency): measured by the achievable data rate per unit bandwidth R_b/B
- It is always desired to maximize bandwidth efficiency at a minimal required Eb/No

Example

 Suppose you are a system engineer in Huawei/ZTE, designing a part of the communication systems. You are required to design a modulation scheme for three systems using MFSK, MPSK or MQAM only. State the modulation level M to be low, medium or high

An ultra-wideband system

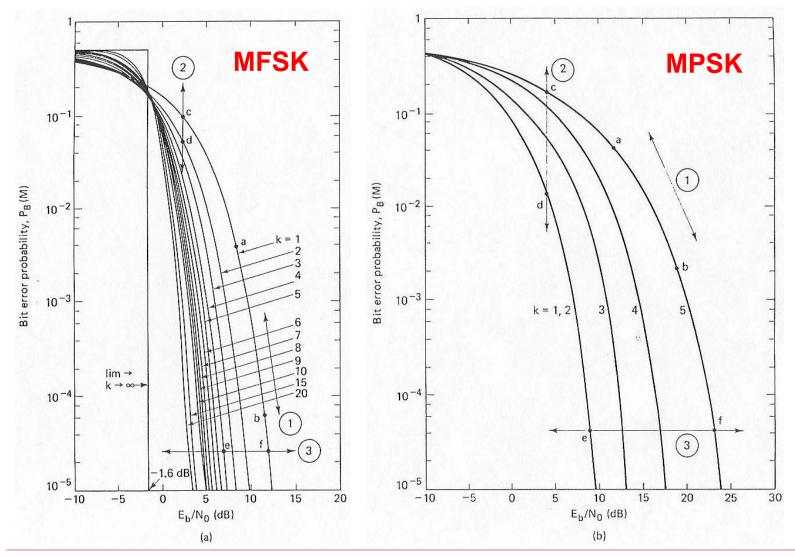
- Large amount of bandwidth
- Band overlays with other systems
- Purpose: high data rate

UWB versus other radio communications systems 102 mobile phones 10 10⁰ Power (W/MHz) 3G mobile phones, 101 reless LAN 102 103 104 10 10M 1G 10G 10k 100k 1M 100M

Frequency bandwidth (Hz)

A wireless remote control system

- Use unlicensed band
- Purpose: control devices remotely


A fixed wireless system

- Use licensed band
- Transmitter and receiver fixed with power supply
- Voice and data connections in rural areas

Meixia Tao @ SJTU

Energy Efficiency Comparison

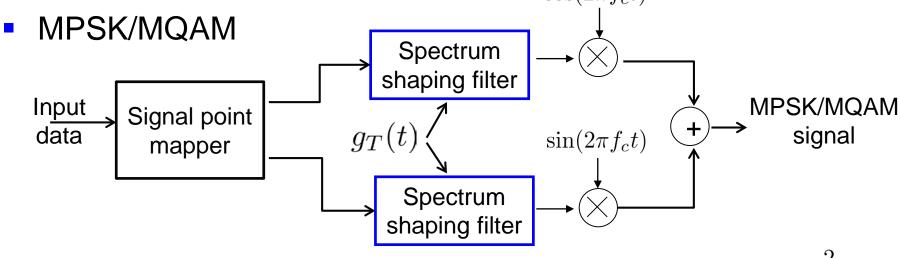
Picture from: Proakis J G, Salehi M. Fundamentals of communication systems[M]. Pearson Education India, 2007.

Meixia Tao @ SJTU

Energy Efficiency Comparison (cont'd)

MFSK:

- At fixed E_{b}/N_{o} , increase M can provide an improvement on P_{b}
- At fixed P_b increase M can provide a reduction in the E_b/N_o requirement


MPSK

- BPSK and QPSK have the same energy efficiency
- At fixed E_b/N_o, increase M degrades Pb
- At fixed Pb, increase M increases the Eb/No requirement

MFSK is more energy efficient than MPSK

Bandwidth Efficiency Comparison

• To compare bandwidth efficiency, we need to know the power spectral density (power spectra) of a given modulation scheme $\cos(2\pi f_c t)$

- If $g_T(t)$ is rectangular, the bandwidth of mainlope is $B = \frac{2}{T_T}$
- If it has a raised cosine spectrum, the bandwidth is

$$B = \frac{1+\alpha}{T_s}$$

Bandwidth Efficiency Comparison (cont'd)

 In general, bandwidth required to pass MPSK/MQAM signal is approximately given by

$$B = \frac{1}{T_s}$$

• But $R_b = \frac{\log_2 M}{T_s} = \text{bit rate}$

Then bandwidth efficiency may be expressed as

$$\rho = \frac{R_b}{B} = \log_2 M \text{ (bits/sec/Hz)}$$

Bandwidth Efficiency Comparison (cont'd)

MFSK:

Bandwidth required to transmit MFSK signal is

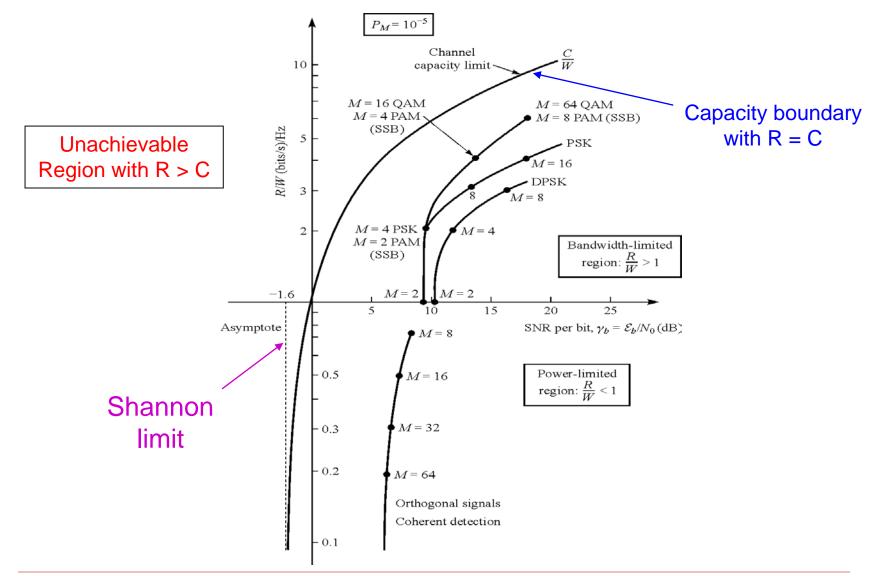
$$B = \frac{M}{2T}$$

(Adjacent frequencies need to be separated by 1/2T to maintain orthogonality)

Bandwidth efficiency of MFSK signal

R_b	$2\log_2 M$	(bite/e/Ll-)
$p = \frac{1}{B} =$	= M	(bits/s/Hz)

М	2	4	8	16	32	64
م (bits/s/Hz)	1	1	0.75	0.5	0.3125	0.1875


As M increases, bandwidth efficiency of MPSK/MQAM increases, but bandwidth efficiency of MFSK decreases.

Fundamental Tradeoff : Bandwidth Efficiency and Energy Efficiency

- To see the ultimate power-bandwidth tradeoff, we need to use Shannon's channel capacity theorem:
 - Channel Capacity is the theoretical upper bound for the maximum rate at which information could be transmitted without error (Shannon 1948)
 - For a bandlimited channel corrupted by AWGN, the maximum rate achievable is given by

$$R \le C = B \log_2(1 + SNR) = B \log_2(1 + \frac{P_s}{N_0 B})$$

• Note that $\frac{E_b}{N_0} = \frac{P_s T}{N_0} = \frac{P_s}{RN_0} = \frac{P_s B}{RN_0 B} = SNR \frac{B}{R}$
• Thus $\frac{E_b}{N_0} = \frac{B}{R} (2^{R/B} - 1)$

Power-Bandwidth Tradeoff

Picture from: Proakis J G, Salehi M. Fundamentals of communication systems[M]. Pearson Education India, 2007.

Meixia Tao @ SJTU

Notes on the Fundamental Tradeoff

• In the limits as R/B goes to 0, we get

$$\frac{E_b}{N_0} = \ln 2 = 0.693 = -1.59dB$$

- This value is called the Shannon Limit
- Received E_b/N_0 must be >-1.6dB to ensure reliable communications
- BPSK and QPSK require the same E_b/N_0 of 9.6 dB to achieve $P_e=10^{-5}$. However, QPSK has a better bandwidth efficiency
- MQAM is superior to MPSK
- MPSK/MQAM increases bandwidth efficiency at the cost of lower energy efficiency
- MFSK trades energy efficiency at reduced bandwidth efficiency.

Example

 Suppose you are a system engineer in Huawei/ZTE, designing a part of the communication systems. You are required to design a modulation scheme for three systems using MFSK, MPSK or MQAM only. State the modulation level M to be low, medium or high

An ultra-wideband system

- Large amount of bandwidth
- Band overlays with other systems
- Purpose: high data rate

UWB versus other radio communications systems 102 mobile phones 10 10⁰ Power (W/MHz) 3G mobile phones, 101 reless LAN 102 103 104 10 10M 1G 10G 10k 100k 1M 100M Frequency bandwidth (Hz)

A wireless remote control system

- Use unlicensed band
- Purpose: control devices remotely

A fixed wireless system

- Use licensed band
- Transmitter and receiver fixed with power supply
- Voice and data connections in rural areas

Meixia Tao @ SJTU

Practical Applications

- BPSK:
 - WLAN IEEE802.11b (1 Mbps)
- QPSK:
 - WLAN IEEE802.11b (2 Mbps, 5.5 Mbps, 11 Mbps)
 - 3G WDMA
 - DVB-T (with OFDM)
- QAM
 - Telephone modem (16QAM)
 - Downstream of Cable modem (64QAM, 256QAM)
 - WLAN IEEE802.11a/g (16QAM for 24Mbps, 36Mbps; 64QAM for 38Mbps and 54 Mbps)
 - LTE Cellular Systems
- FSK:
 - Cordless telephone
 - Paging system